75 research outputs found

    Experience with short-period, small gap undulators at the SwissFEL aramis beamline

    Get PDF
    The SwissFEL Aramis beamline provides hard X-ray FEL radiation down to 1 Angström with 5.8 GeV and short period, 15mm, in-vacuum undulators (U15). To reach the maximum designed K-value of 1.8 the U15s have to be operated with vacuum gaps down to 3.0 mm. The thirteen-undulator modules are 4m long and each of them is equipped with a pair of permanent magnet quadrupoles at the two ends, aligned magnetically to the undulator axis. Optical systems and dedicated photon diagnostics are used to check the alignment and improve the K-value calibration. In this talk the main steps of the undulator commissioning will be recalled and a systematic comparison between the magnetic results and the electron and photon based measurements will be reported to highlight achievements and open issues.peer-reviewe

    Ultrashort Free-Electron Laser X-ray Pulses

    Get PDF
    For the investigation of processes happening on the time scale of the motion of bound electrons, well-controlled X-ray pulses with durations in the few-femtosecond and even sub-femtosecond range are a necessary prerequisite. Novel free-electron lasers sources provide these ultrashort, high-brightness X-ray pulses, but their unique aspects open up concomitant challenges for their characterization on a suitable time scale. In this review paper we describe progress and results of recent work on ultrafast pulse characterization at soft and hard X-ray free-electron lasers. We report on different approaches to laser-assisted time-domain measurements, with specific focus on single-shot characterization of ultrashort X-ray pulses from self-amplified spontaneous emission-based and seeded free-electron lasers. The method relying on the sideband measurement of X-ray electron ionization in the presence of a dressing optical laser field is described first. When the X-ray pulse duration is shorter than half the oscillation period of the streaking field, few-femtosecond characterization becomes feasible via linear streaking spectroscopy. Finally, using terahertz fields alleviates the issue of arrival time jitter between streaking laser and X-ray pulse, but compromises the achievable temporal resolution. Possible solutions to these remaining challenges for single-shot, full time-energy characterization of X-ray free-electron laser pulses are proposed in the outlook at the end of the review

    Peptide Bond Distortions from Planarity: New Insights from Quantum Mechanical Calculations and Peptide/Protein Crystal Structures

    Get PDF
    By combining quantum-mechanical analysis and statistical survey of peptide/protein structure databases we here report a thorough investigation of the conformational dependence of the geometry of peptide bond, the basic element of protein structures. Different peptide model systems have been studied by an integrated quantum mechanical approach, employing DFT, MP2 and CCSD(T) calculations, both in aqueous solution and in the gas phase. Also in absence of inter-residue interactions, small distortions from the planarity are more a rule than an exception, and they are mainly determined by the backbone ψ dihedral angle. These indications are fully corroborated by a statistical survey of accurate protein/peptide structures. Orbital analysis shows that orbital interactions between the σ system of Cα substituents and the π system of the amide bond are crucial for the modulation of peptide bond distortions. Our study thus indicates that, although long-range inter-molecular interactions can obviously affect the peptide planarity, their influence is statistically averaged. Therefore, the variability of peptide bond geometry in proteins is remarkably reproduced by extremely simplified systems since local factors are the main driving force of these observed trends. The implications of the present findings for protein structure determination, validation and prediction are also discussed

    A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam

    Get PDF
    We present the first lasing results of SwissFEL, a hard X-ray free-electron laser (FEL) that recently came into operation at the Paul Scherrer Institute in Switzerland. SwissFEL is a very stable, compact and cost-effective X-ray FEL facility driven by a low-energy and ultra-low-emittance electron beam travelling through short-period undulators. It delivers stable hard X-ray FEL radiation at 1-Å wavelength with pulse energies of more than 500 μJ, pulse durations of ~30 fs (root mean square) and spectral bandwidth below the per-mil level. Using special configurations, we have produced pulses shorter than 1 fs and, in a different set-up, broadband radiation with an unprecedented bandwidth of ~2%. The extremely small emittance demonstrated at SwissFEL paves the way for even more compact and affordable hard X-ray FELs, potentially boosting the number of facilities worldwide and thereby expanding the population of the scientific community that has access to X-ray FEL radiation

    The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages

    Get PDF
    The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 deletion mutant lower viral titers were observed in all tissues examined when compared to wildtype MCMV, indicating an important role of m42 for viral replication in vivo. The m42 gene product was identified as an 18 kDa protein expressed with early kinetics and is predicted to be a tailanchored membrane protein. Tracking of surface-resident CD45 molecules revealed that m42 induces internalization and degradation of CD45. The observation that the amounts of the E3 ubiquitin ligases Itch and Nedd4 were diminished in cells expressing m42 and that disruption of a PY motif in the N-terminal part of m42 resulted in loss of function, suggest that m42 acts as an activator or adaptor for these Nedd4-like ubiquitin ligases, which mark CD45 for lysosomal degradation. In conclusion, the down-modulation of CD45 expression in MCMV-infected myeloid cells represents a novel pathway of virus-host interaction

    Sesquiterpene lactones from the aerial parts of Inula oculus-christi

    No full text
    Pulchellin E (1) and gaillardin (2) were isolated from the aerial parts of Inula oculus-christi, along with the flavone hispidulin. The C-13-NMR chemical shifts of 1 and 2 are reported. (C) 2003 Elsevier Science B.V. All rights reserved

    Diterpenes from Achillea clypeolata

    No full text
    The isolation of 16 alpha,17-epoxy-ent-kaurane (a known compound), 3 alpha-acetoxy-16 alpha,17-epoxy-ent-kaurane and 19-acetoxy-16 alpha,17-epoxy-ent-kaurane from roots of Achillea clypeolata is reported. Copyright (C) 1996 Elsevier Science Lt
    corecore